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The flow of a continuously stratified fluid over a smooth bottom bump in a channel 
of finite depth is considered. In the weakly nonlinear-weakly dispersive regime 
E = a / h  << 1, p = h / l  << 1 (where h is the channel depth and a,l are the peak 
amplitude and the width of the obstacle respectively), the parameter A = e/pP (where 
p > 0 depends on the obstacle shape) controls the effect of nonlinearity on the steady 
lee wavetrain that forms downstream of the obstacle for subcritical flow speeds. For 
A = O( l), when nonlinear and dispersive effects are equally important, the interaction 
of the long-wave disturbance over the obstacle with the lee wave is fully nonlinear, and 
techniques of asymptotics ‘beyond all orders’ are used to determine the (exponentially 
small as p + 0) lee-wave amplitude. Comparison with numerical results indicates 
that the asymptotic theory often remains reasonably accurate even for moderately 
small values of p and f, in which case the (formally exponentially small) lee-wave 
amplitude is greatly enhanced by nonlinearity and can be quite substantial. Moreover, 
these findings reveal that the range of validity of the classical linear lee-wave theory 
( A  << 1) is rather limited. 

1. Introduction 
When a stably stratified fluid flows over topography, the internal gravity waves that 

form downstream are commonly referred to as lee waves; in many respects, they are 
akin to the more familiar gravity waves induced on the free surface of a homogeneous 
fluid by a moving disturbance. Lee waves are of fundamental meteorological interest, 
as they are often present on the lee side of mountains owing to the prevailing winds 
and are believed to play an important part in the development of storms (see, for 
example, Lilly 1978). 

We shall focus on the generation of lee-wave disturbances in the simple setting 
of continuously stratified flow over a two-dimensional bottom obstacle in a channel 
bounded by rigid walls. As in the analogous problem of gravity waves on the free 
surface of a homogeneous fluid layer, it proves useful to introduce the long-wave 
parameter p = h/ l  and the nonlinearity parameter e = a/h, where h is the channel 
depth and a, 1 are, respectively, the peak amplitude and the characteristic lengthscale 
of the obstacle in the streamwise direction. 

These two parameters along with the Froude number F = U/(h.A’o), U being the 
undisturbed flow speed and J V ~  a characteristic value of the Brunt-Vaisala frequency, 
define various flow regimes. Specifically, the linear lee-wave regime is obtained when 
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e -+ 0, p = 0(1) and has been analysed extensively in previous work using the 
linearized equations of motion (see Miles 1969 for a review). In this limit, the induced 
steady lee-wave pattern comprises a finite number of internal-wave modes. The 
wavenumber of each of these modes is such that the phase speed matches the flow 
speed, and, for this to be possible, it follows from the linear dispersion relation (see, 
for example, Yih 1979, Ch. 5,94) that the Froude number has to be subcritical relative 
to each mode that is excited - the flow speed has to be less than the corresponding 
long-wave speed. The lee-wave amplitude depends on the specific obstacle shape and 
may be found by Fourier-transform techniques. In particular, in the hydrostatic limit 
(when the width of the obstacle is large compared to the channel depth, p << l),  
dispersive effects are weak and the lee-wave amplitude is exponentially small with 
respect to p. 

The flow characteristics in the nonlinear regime are more difficult to analyse quan- 
titatively, however, because the governing equations are nonlinear in general when 
e is finite, and previous efforts centre on two approaches that are valid under par- 
ticular conditions. Specifically, Long’s model is based on the observation that the 
Euler equations of two-dimensional steady flow become linear for certain density and 
velocity profiles of the background flow, assuming that the flow remains undisturbed 
far upstream (Dubreil-Jacotin 1935; Long 1953; Yih 1960). In the case of constant 
upstream flow speed which is of interest here, these conditions are met for a weakly 
stratified (Boussinesq) fluid with uniform stratification (constant Brunt-Vaisala fre- 
quency). Long’s model has been used primarily to obtain theoretical estimates of 
the critical obstacle steepness (keeping the other flow parameters fixed) above which 
density inversions occur and the assumption of steady flow is expected to fail owing 
to static instability (Miles 1969; Miles & Huppert 1969). For finite-amplitude obsta- 
cles, the validity of Long’s hypothesis of no upstream influence has been questioned 
(Baines 1977), however, and the issue has not been settled completely as yet (see, for 
example, the recent numerical study by Lamb 1994). 

The second approach has received attention more recently and is valid in the weakly 
nonlinear rkgime (0 < 6 << 1) near resonance - when the flow speed is close to the 
long-wave speed of an internal-wave mode in the channel. Under these conditions, the 
response is dominated by the resonant mode and the evolution of the corresponding 
amplitude is governed by a forced Kortewegile Vries (fKdV) equation (Grimshaw & 
Smyth 1986). For transcritical flow speeds, strong upstream influence is found in the 
form of solitary waves that are generated periodically, as in the analogous problcm of 
free-surface flow of a homogeneous fluid near resonance (Akylas 1984; Cole 1985). In 
the special case of a uniformly stratified Boussinesq fluid, when Long’s model applies, 
the fKdV equation is replaced by an integral-differential evolution equation which 
reveals that density inversions often appear during the transient development of the 
response (Grimshaw & Yi 1991). 

We shall concentrate on finite-amplitude lee-wave disturbances for subcritical flow 
speeds (away from resonant conditions). Our approach is complementary to the 
works cited above: as in Long’s model, attention is confined to steady waves under 
the assumption of no upstream influence, but the flow may have general (stable) 
stratification. Moreover, while the asymptotic theory developed here is formally 
valid in the weakly nonlinear-weakly dispersive regime (e ,p  << l), comparison with 
numerical solutions indicates that the analytical results often are reasonably accurate 
for a wide range of moderately small values of e and p - sometimes even close to 
conditions where density inversions are about to occur. 

The asymptotic theory is motivated by an earlier study, based on the (steady) 
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fKdV equation, of short-scale wavetrains generated by steady forcings (Akylas & 
Yang 1995). This model problem suggests that nonlinear effects can significantly 
modify the lee-wave disturbance induced by a long obstacle (p << l), even though the 
wave amplitude is exponentially small with respect to p. More precisely, in the joint 
limit e,p --+ 0, it turns out that the relative importance of finite-amplitude effects is 
measured by the parameter 

€ 

A = -  (1.1) 

where p > 0 depends on the obstacle shape. In particular, the classical linear lee-wave 
theory is expected to be valid when A << 1, so its usefulness is limited - the situation 
is reminiscent of the ‘long-wave paradox’ in weakly nonlinear shallow-water waves 
(Ursell 1953). 

For A = O(lj ,  when nonlinear and dispersive effects are equally important, the 
interaction of the long-wave disturbance over the obstacle with the relatively short lee 
wave downstream is, in fact, fully nonlinear. As a result, it is necessary to account for 
all nonlinear and dispersive terms in the governing equations in order to determine 
the lee-wave amplitude; following Akylas & Yang (1995), this is carried out using 
techniques of asymptotics ‘beyond all orders’ (see, for example, Segur, Tanveer & 
Levine 1991). 

The predictions of the asymptotic theory are compared to numerically computed 
wave patterns in subcritical stratified flow over two possible obstacle shapes and when 
the square of the Brunt-Vaisala frequency is either constant or varies linearly with 
depth. As expected, there is good agreement in the limit e,p + 0, confirming the 
validity of the asymptotic theory. More interestingly, however, the asymptotic results 
often remain reasonably accurate for moderately small values of e and p ;  in this 
range, the (formally exponentially small) lee-wave amplitude can be quite substantial 
- in some cases several times larger than the estimate obtained from linear theory - 
owing to the effect of nonlinearity. 

In a recent numerical study of two-layer flow over topography, Belward & Forbes 
(1993) also report that the lee-wave amplitude is enhanced owing to nonlinear effects. 
It would appear that the approach taken here can be extended to discuss layered 
flows. 

,@ ’ 

2. Formulation and linear theory 
Consider two-dimensional steady flow of an inviscid, incompressible, density- 

stratified fluid along a channel that is bounded by rigid walls and features a locally 
confined bottom bump. 

We shall use dimensionless variables taking the uniform channel depth h (away 
from the bottom bump) as the vertical lengthscale, the characteristic width 1 of the 
bump as the horizontal lengthscale, and A”;’, the inverse of a characteristic value 
of the Brunt-Vaisala frequency, as the timescale. Far upstream (x --+ -m), the flow 
velocity is assumed to be uniform, and the density po(z) varies with height z in a 
prescribed (stable) way. The Brunt-Vaisala frequency J’(z j is then given by 

PPoJ2 = -Poz, 

where P = .Nih/g is the Boussinesq parameter, g being the gravitational acceleration. 
For incompressible flow, it is convenient to work with the stream function Y = 

F z  +Fly, where y (x ,  z )  describes the disturbance induced by the bottom obstacle and 
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F is the Froude number, F = U / ( h N o ) ,  U being the upstream flow speed. In terms of 
Y, the horizontal and vertical velocity components are given by Yz, -pyx ( p  = h/E) 
respectively ; thus, incompressibility is automatically satisfied. 

Assuming further that all streamlines originate far upstream where the flow remains 
undisturbed (no upstream influence), 

y - + 0  (x-b-m), (2.1) 
the momentum equations and the equation of mass conservation can be combined, 
following the procedure outlined in Akylas & Grimshaw (1992), into a single equation 
for y :  

This equation, which is usually referred to as Long's equation (Long 1953), is valid 
under the assumptions stated above within the channel -a < x < cc, c f ( x )  < z < 1. 
Here z = ef(x) defines the bottom of the channel where the bump (f(x) -+ 0, x -+ 
- +a) is present, and F = a/h, a being the peak height of the bump. 

Finally, the appropriate boundary conditions, which ensure that the channel walls 
are streamlines, are 

w = -.f(x) ( z  = m)), (2.3a) 

y = 0 ( z  = 1). (2.3b) 

For a finite-amplitude obstacle, the problem posed by (2.1)-(2.3) is nonlinear in 
general. Before turning our attention to nonlinear effects, however, we shall briefly 
review the salient features of the linear response. In the small-amplitude limit (e  -+ 0),  
y = O(e) so the governing equation (2.2) and the bottom boundary condition (2.3a) 
may be linearized. The resulting linear boundary-value problem then can be readily 
solved by Fourier transform, 

w(x, z )  = 1- e'x~(k, z)dk, (2.4) 

indenting the contour (e- to pass below all singularities of i j j  on the real k-axis so 
that (2.1) is met. It turns out that 

where f^(k) is the Fourier transform of the obstacle shape f(x), 

The first term on the right-hand side of (2.5) corresponds to the purely hydrostatic 
( p  = 0) linear response and is given in terms of the solution to the boundary-value 
problem 

(2.6a) 

q(0) = 1, q(1) = 0. (2.6b) 
The term including the infinite sum in expression (2.5) accounts for dispersive correc- 
tions to the hydrostatic response owing to the internal-wave modes (Cpr(z),rc,) ( r  = 

Po 
( P o 4 z ) z  + FJ24 = 0 (0 d z ,< I), 
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1,2, ...). This orthogonal and complete set of modes is defined by the eigenvalue 
problem 

(2.7~)  

4 r  r= 0 (Z = 0, I), (2.7b) 
and satisfy the orthogonality relation 

l-1 

6,, being the Kronecker delta. In particular, the constants yr  in (2.5) are the partici- 
pation factors of these modes: 

It is clear from (2.5) that 6 has simple-pole singularities on the real k-axis at 
k = - l - ~ : ’ ~ / p  = tk, when K, > 0 for some r ,  and, upon evaluating the contour 
integral in (2.4), these singularities contribute lee waves downstream (x > 0). The sign 
of K, in turn depends on whether the Froude number F is subcritical or supercritical 
relative to cr, the corresponding linear long-wave speed. These are the speeds of the 
linear long-wave modes {fs(z),c,} (s = 1,2,. . .) (with c1 > c2 > . . . > 0) defined by 
the eigenvalue problem 

(2.9~)  

f s  = 0 ( z  = 0,l). (2.9b) 
If now C N + ~  < F < C N  for some N 2 1, it follows that ~1 > ~2 > ... > K N  2 0 > 
K N + ~  > * . .  and, in particular, K N  = 0 for F = C N  (Yih 1979, Ch. 5, $4.1.3). Hence, 
lee waves are excited only when F is subcritical relative to at least c1, the highest of 
the linear long-wave speeds. This is easy to understand physically because the phase 
speed of each internal-wave mode is known to decrease with wavenumber (Yih 1979, 
Ch. 5, $4.1.4), so stationary (in the frame of the obstacle) lee waves are not possible 
if the flow speed is supercritical relative to all linear long-wave speeds. 

We also remark here that the steady linear response is singular when the flow 
speed is critical with respect to a long-wave speed -- the inhomogeneous problem 
(2.6b) has no solution since, from (2.9b), the long-wave mode fN(z) is a non-trivial 
homogeneous solution when F = cN (tcN = 0). This is the resonant case where, as 
mentioned earlier, the assumptions of steady flow and no upstream influence fail in a 
finite range of transcritical flow speeds (Grimshaw & Smyth 1986; Grimshaw & Yi 
1991). As our interest centres on steady lee-wave disturbances, we shall take the flow 
speed to be subcritical relative to at least one (and not close to any) linear long-wave 
speed, viz. c N + 1  < F < C N  with N 2 1. 

Returning then to (2.4) and (2.5), we conclude that the downstream response 
consists of a finite number of lee waves: 

N 

v - - 2 n c C  yrkrf^(kr)4r(z) sinki-x (X --+ m), 
r=l  

taking the obstacle to be symmetric, f(x) = f(-x). If, furthermore, the obstacle is long 
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relative to the channel depth ( p  << l), the induced lee waves have short wavelength 
relative to the obstacle length (the lee wavelength is comparable to the channel depth) 
and exponentially small amplitude (the Fourier transform of a smooth obstacle profile 
f(x) is exponentially small for large wavenumbers, k, >> 1). Accordingly, in this nearly 
hydrostatic regime, the lee wave of mode N which has the relatively longer wavelength 
(kN < k N - 1  < . * * < k l )  dominates: 

y -2nf?yNkNf^(kht)f$N(z) sinkNX (x Go; p << 1). (2.10) 

However, we shall demonstrate in the ensuing discussion that the validity of 
this expression for the induced lee-wave disturbance is severely limited by finite- 
amplitude effects. Specifically, it follows from the asymptotic theory developed below 
that, close to the hydrostatic limit ( p  << l), the relative importance of nonlinearity 
is controlled by the parameter A defined in (1.1); the linear, nearly hydrostatic 
approximation (2.10) is valid only when f << pp, where p depends on the particular 
obstacle shape. 

3. Asymptotic theory 
Attention is now focused on steady lee-wave disturbances in the weakly nonlinear- 

weakly dispersive rigime ( e , p  << 1). As indicated by the linear solution sketched in 
$2, lee waves in the physical domain go hand in hand with simple-pole singularities 
of @(k,z) on the real k-axis in the wavenumber domain, and the lee-wave amplitude 
is completely determined by the corresponding residues. Accordingly, following the 
perturbation procedure devised by Akylas & Yang (1995), we shall compute the 
residues of @(k,z) at the dominant lee wavenumber k = - tkN asymptotically for 
€,p << 1. 

To this end, returning to the full nonlinear governing equation (2.2) and taking the 
Fourier transform formally, it is found that ijj satisfies 

with 

Similarly, the boundary conditions (2.3) (after expanding (2.3~)  about z = 0) transform 
to 

(3 .2~)  

ŵ  = o  (z = 1). (3.2b) 
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Expanding then @ in powers of E and p2, it follows from (3.1), (3.2) that 

where 

The U ( E )  term in this expansion corresponds to the linear hydrostatic solution; the 
rest of the terms are the leading-order nonlinear and dispersive corrections. 

In view of the poles at k = fk, of the linear dispersive solution (2.5), it is expected 
that expansion (3.3) will become disordered when k = U ( l / p )  owing to dispersive 
effects. There is a second non-uniformity in (3.3), however, that derives from nonlinear 
effects: since f2(x) is generally steeper than f(x) in the physical domain, f 2 ( k )  goes 
to zero less rapidly than F(k) as IkJ + co in the wavenumber domain. 

To be specific, for the obstacle profile f(x) = sechPx, where p is a positive integer, 

h 

hence 

resulting in a disordering of (3.3) when k = U(e-'/pj. For this class of obstacles, 
therefore, it is now clear that the classical linear lee-wave theory is valid - nonlinearity 
does not affect the residues of the poles of @ ( k , z )  at k = +kN - only when e << pp: in 
terms of the parameter A = e/pP, this condition is met when A << 1. Note, however, 
that p is also the order of the pole singularities (closest to the real axis) of the 
obstacle shape f(xj  = sechPx in the complex plane; with this interpretation of p ,  the 
parameter A can be defined for any smooth, locally confined obstacle profile with 
pole singularities in the finite complex planet, and the above conclusion regarding 
the role of nonlinear effects is generally valid. 

The following discussion focuses on two particular obstacle shapes, (i) f(x) = sech x 
and (ii) f(x) = sechx, assuming that A = U(1) so that nonlinear and dispersive effects 
are equally important. As indicated in Akylas & Yang (1995), these two examples 
typify obstacle profiles with pole singularities in the finite complex plane. 

The asymptotic analysis parallels that of the model problem studied in Akylas & 
Yang (1995). However, the technical details turn out to be somewhat more involved 
here because the governing equation (2.2) is a partial differential equation and, 
generally, the nonlinear terms in (2.2) and in the boundary condition (2.3a) are higher 
than quadratic. In this section, we shall only outline the main steps in the analysis 
and give the final results; details of the derivation may be found in Appendices A 
and B. 

2 

t This excludes, for example, a Gaussian obstacle shape which has no singularities in the finite 
complex plane and requires separate treatment (Akylas & Yang 1995). 
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3.1. Case f i ) :  f ( x )  = sech2x 

For this obstacle profile, 

and A = e /p2 .  The straightforward expansion (3.3) becomes disordered when Ikl = 
0(1/p) = O ( E - ’ / ~ ) .  To remove this non-uniformity, we replace (3.3) with the two-scale 
expansion 

nk 
i $=pcosech-@(~ ,z )+- . . ,  

2 
in terms of the scaled wavenumber variable K = pk, with 

(3.4) 

so that (3.4) is consistent with (3.3) when 1 << Ikl << l/p. 
As already remarked, @(k,  z ) ,  and hence @ ( K ,  z), are expected to have simple-pole 

singularities on the real k-axis at the lee wavenumbers k = +k, ( K  = +Kr ) ( r  = 
1,. . . , N ) .  The dominant contribution to the lee-wave amplitude, however, comes from 
the residues of the poles that are closest to the origin. Accordingly, focusing attention 
on @ ( K , z ) ,  we wish to compute the residues of the poles at K = flc? asymptotically 
as p -+ 0 for A = O( 1). 

Following the procedure described in Appendix A, upon substituting (3.4) in (3.1) 
and (3.2), it is found that, to leading order, @ satisifies a Volterra integral-differential 
boundary-value problem. This problem is singular at K = k ~ r ; / ~ ,  and posing the 
solution as a power series in K consistent with (3.5), one may deduce the local 
behaviour of @( K ,  z) near these singularities : 

112 

where + N ( ~ )  is the mode shape corresponding to the dominant lee-wave mode and 
CN is a constant that can be determined numerically from an infinite sequence of 
boundary-value problems. 

Combining (3.6) with (3.4), it is now seen that i$(k,z)  has simple-pole singularities 
at k = _+kw and the corresponding residues are known: 

Hence, returning to (2.4) and evaluating the contour integral, these poles contribute 
a lee wave with wavenumber kN for x > 0: 

lp - 4nCN exp(-;nkN)@N(z) sin kNx (x + a). (3.7) 

As expected, the lee-wave amplitude is exponentially small ( k ~  = k-z2/p >> 1). In 
fact, comparing (3.7) with the linear result (2.10) (using f^(kN) - kNexp(-+kN) in 
this case), it is seen that the effect of finite amplitude shows up solely in the value 
of the constant C N ;  in order to assess the significance of finite-amplitude effects, one 
needs to know how CN depends on the parameter A. This question is addressed in $5 
by computing CN numerically for specific examples. 
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3.2. Case (ii): f(x) = sech x 

h nk h rck 
f (k )  = sech -, f2(k) = i k  cosech -, 

2 2 

In this case 

155 

and A = e /p .  The straightforward expansion (3.3) becomes disordered when k = 
O(l/p) = O(l/e), and, proceeding as in case (i), we propose the uniformly valid 
expansion 

nk 
@ = p s e c h - @ ( ~ , z ) + . . .  

2 
with 

Again, we expect that @(K,z) has simple-pole singularities at K = &* and the 
goal is to compute the corresponding residues. Here, however, the (approximate) 
boundary-value problem that governs @ ( K , z )  to leading order for 1x1 = O(1) is not 
valid when K is very close to these singularities (K? - 1x1 < O ( p ) )  and a local analysis 
is needed there. As explained in Akylas & Yang (1995) (see also Yang & Akylas 
1995), this complication arises from the fact that @ = O(1) as K + 0; this in turn 
is a consequence of the simple-pole singularities (closest to the real x-axis) of sech x 
which determine the dominant behaviour of f^(k) as JkJ + m. 

Specifically, in the ‘intermediate’ region ,u << K? - 1x1 << 1, where K is close but 
not too close to &ICY’, the leading-order behaviour of @ ( K , z )  turns out to be (see 
Appendix B) 

where CN is a constant to be determined numerically, and 

a = 1 - -(v + K N Y N $ ~ ( O ) )  
A 

2KZ2 

with 

(3.10) 

(3.11) 

v = f O $ N  { px2q’$’, - 2$q$N + PMl(q$N)’ dz 
1 I 

and Y N  = 1 fOq4Ndz. 

Note that, according to (3.10), the singularities of @(K,z) at K = &cZ2 are not simple 
poles (save in the linear limit A + 0), contrary to the fact that the induced lee wave 
has constant amplitude as x + 00; this is an indication that the asymptotic behaviour 
(3.10) breaks down in the immediate vicinity of K = ~r - 1x1 = O ( p ) .  Also, 
the argument used in Appendix B to obtain (3.10) is not strictly valid when CI < 1 - 
a different theoretical approach is needed but this matter is not pursued here. The 
physical significance of this condition is discussed in $5 for specific examples. 

The correct structure of @(K,z)  at IC = +KT can be obtained using a matched- 
asymptotics procedure in terms of the ‘inner’ variable q = ( J C ~  - l ~ l ) / p  (see Appendix 
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B). It transpires that @ ( K , z )  has simple-pole singularities at K = _+xZ2 and the 
corresponding residues are completely determined in terms of the constant CN in 
(3.10). In view of (3.8), one then has 

where r(a) denotes the gamma function. 

at k = f k ~  according to (3.12), the induced lee wave downstream takes the form 
Therefore, returning to (2.4) and accounting for the contribution of the poles of i j j  

2" 
y - 4ncN- ~'-'exp(-$kN) (bN(Z) sin(kNX - ;(a - 1)X) (X -+ a). (3.13) 

l- (4 
Comparing the above expression with the corresponding linear result (2.10) (with 

f^(kN) - exP(-;.nkN)), 

'v -271AY~ic~ 112 eXp(-;ZkN)4N(Z) SinkNX, 

note that, apart from the value of C N ,  here nonlinearity affects both the order of 
magnitude of the amplitude and the phase of the lee waves through the value of a 
which depends on the background flow and the nonlinearity parameter A according 
to (3.11). These additional nonlinear effects arise from the fact that the singularities 
(closest to the real axis) of the obstacle profile f(x) = sech x are simple poles 
so @(ic,z) = O(1) (K -+ 0) ;  this necessitates the local analysis near ic = icZ2 (see 
Appendix B), which determines the lee-wave amplitude and the phase shift that the 
lee wavetrain experiences owing to its interaction with the long wave above the 
topography. Similar effects are to be expected generally for lee waves induced by 
obstacle profiles with simple-pole singularities such as, for example, the algebraic 
obstacle or 'Witch of Agnes? (Akylas & Yang 1995; Yang & Akylas 1995). 

4. Numerical solution 
The asymptotic results (3.7) and (3.13) suggest that, for A = 0(1), nonlinearity 

may seriously affect the lee-wave pattern induced by a long smooth obstacle. On the 
other hand, the asymptotic theory is formally valid in the weakly nonlinear-weakly 
dispersive limit (f, j~ << 1) where lee waves have exponentially small amplitude and 
form only a small portion of the overall disturbance. From a more practical point 
of view, therefore, it would be of interest to know whether nonlinear effects play 
an equally important part in the parameter range where the lee-wave amplitude is 
more substantial. To address this issue, we shall resort to a numerical procedure 
for calculating steady, finite-amplitude lee waves which also provides independent 
confirmation of the asymptotic theory. 

One of the complications in the numerical treatment of the nonlinear lee-wave 
problem (2.2)-(2.3) arises from the lower boundary condition (2.3a) that holds on the 
bottom bump. Although this condition can be implemented through a topography- 
following coordinate transformation (see, for example, Lilly & Klemp 1979), we find 
it more convenient to work in 0 ,< z ,< 1 by applying the 'fictjtious' condition 

Y(X,O) = -m (4.1) 

at z = 0, rather than the actual nonlinear condition (2.3~)  at z = .f(x) (the same 
device was used by Laprise & Peltier 1989). Of course, Y(x) has to be such that (2.3a) 
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is also satisfied and this is achieved via an iterative procedure: denoting by f in'(x) 
the estimate of 7(x) and by V ( " ) ( X , Z )  the corresponding estimate of yl(x,z) after n 
iterations, the next iteration for determining w@+') proceeds using 

where f(x) is the obstacle profile. (The iteration scheme is initiated by choosing 
T(')(x) = f(x) in which case (4.1) reduces to the linear boundary condition.) 

Attention now is focused on the solution of equation (2.2) in 0 < z < 1, -a < 
x < co, subject to the upstream condition (2.1) and the boundary conditions (2.3b) 
and (4.1), bearing in mind that T(x) and y (x , z )  are intermediate estimates in the 
above iteration scheme. Mathematically, the governing equation (2.2) is an elliptic 
partial differential equation while the boundary conditions are of the parabolic type 
in the sense that a downstream condition cannot be specified a priori. For this reason, 
numerical-instability problems are to be expected if one attempts to determine the 
lee waves induced downstream by solving (2.2) through a marching scheme, starting 
from far upstream. 

To circumvent this difficulty, in analogy with the linearized response (2.5), we 
expand y ( x , z )  in terms of the linear hydrostatic response q(z)  (see (2.6b)) and the 
linear internal-wave modes defined in (2.7b) : 

Hence, the boundary conditions (2.3b) and (4.1) are automatically met, and substitut- 
ing (4.2) into (2.2), making use of the orthogonality relation (2.8), yields an (infinite) 
system of coupled nonlinear ordinary differential equations for the modal amplitudes 

In this system, the equations for the amplitudes of the modes that contribute 
lee waves downstream ( r  = 1, ..., N )  are solved numerically by a standard fourth- 
order Runge-Kutta marching scheme starting far upstream; the equations for the 
remaining evanescent modes are treated as boundary-value problems by imposing the 
downstream conditions 

a&) ( r  = 1,2,. . .). 

a, + 0 (x + co; r = N + l , N  + 2,. . .). 

Of course, since the system of equations at hand is nonlinear and coupled, it is 
necessary to use an (inner-level) iteration procedure in order to solve for the modal 
amplitudes. However, in the examples discussed below the nonlinear coupling among 
the modes happens to be relatively weak, so typically 5-10 Jacobi iterations are 
sufficient to obtain converged solutions for a,. After these amplitudes are found, the 
'fictitious' obstacle profile 7(x) is updated as already described, and the procedure is 
repeated until the exact lower boundary condition ( 2 . 3 ~ )  is met. 

Finally, in implementing this numerical procedure, it is necessary to use a finite 
computational domain in the streamwise direction and to truncate the modal expan- 
sion (4.2) to a finite number of modes. The size of the computational domain is 
chosen such that the height of the obstacle at the boundaries is small compared to 
the lee-wave amplitude. Also, in the examples discussed below, typically, using eight 
modes is sufficient to compute lee waves with O( lo-") amplitude as long as the grid 
size (used in computing the modes +,.(z) and the modal amplitudes a,(x)) is also made 
fine enough to be consistent with this accuracy. 
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5.  Results and discussion 

(Boussinesq approximation, po = 1)  and N 2 ( z )  varies linearly with height: 

T.-S. Yung and T. R. Akylas 

In the following discussion, the density stratification is taken to be such that f l =  0 

P ( z )  = 1 + bz (0 d z 6 I), 

where b 3 0 is a constant, so M j  = 0 ( j  2 2) in (3.1) and the problem simplifies 
considerably. Moreover, it is assumed that c2 < F < c1 so lee waves of the first mode 
only are excited ( N  = 1). 

Under these conditions, we shall present asymptotic and numerical results for lee 
waves induced by obstacles having either a sech2x or sech x profile, and for two 
particular examples of density stratification, namely b = 0 and b = 1. 

5.1. Uniform stratiJEcation 
When b = 0, we are dealing with a uniformly stratified Boussinesq fluid (constant 
JV, f l  = 0) in which case Long’s model applies and the governing equation (2.2) is 
linear (of course the bottom boundary condition (2.3~1) still is nonlinear). Furthermore, 
the eigenvalue problems (2.7b), (2.9b) and the boundary-value problem (2.6b) for the 
hydrostatic response can be solved in closed form: 

- - r  1 2 2  n ,  
F2 

4r(z) = f is inrzz ( r  = 1,2, ...I; K r  = 

1 
c, = - 

S Z ’  

and 

Also, from (3.11), 

and a > 1 always. According to the criterion given in Grimshaw & Yi (1991), 
non-resonant subcritical flow (relative to el) occurs when c2 + € A 2  < F < c1 - e d ~  
with A ,  = ; & 7 r 5 j 2  = 0.07, A 2  = $v%-’!2 = 0.01. We choose 1/F2 = n2 + 2 ( F  = 
0.2903 = c1 - 0.028); this value of the flow speed is within the non-resonant range 
for the values of E. considered here ( E  < O.l), and the assumption of steady flow is 
expected to hold. 

As noted in 93, the asymptotic expressions (3.7) and (3.13) for the lee wavetrain 
downstream depend on the constant C1 ( N  = 1) which needs to be determined 
numerically. Specifically, the value of C1 can be estimated from the coefficients b,(z) 
of the power series (A3) (for f = sech2x) and (B 11) (for f = sech x) by computing 
the projection of b,(z) on +,(z)  as rn -, co. Note that for f = sech2x, b,(z) (rn 2 2) 
satisfy the sequence of boundary-value problems (A4)-(A 5b), while for f = sech x, 
an analogous sequence is obtained upon substitution of (B 11) into (B l)-(B2b). In 
solving for bm(z) numerically, it is important to note that, as rn increases, high-order 
derivatives of bl,  b2, . . . enter the inhomogeneous boundary condition (A 5a); these 
need to be evaluated accurately to avoid introducing significant error in estimating 
CI. (Details of the numerical procedure for determining C1 can be found in Yang 
1995.) 

Table 1 lists values of the constant C1 for certain values of A. It is worth noting 
that, as the nonlinearity parameter A is increased, C1 increases more rapidly than 
linear theory would imply; for example, doubling the obstacle height can result in an 
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f(x) = sech2x f(x) = sech x 

A CI A c1 
A + 0 2-’I2nA A+O anA 

0.2 1.3 0.1 0.20 
0.4 6.3 0.2 0.99 
0.8 52 

TABLE 1. Computed values of the constant C1 appearing in the asymptotic results (3.7) and (3.13) 
for certain values of the parameter A in the case of uniformly stratified flow of a Boussinesq fluid 
( N  = 1, f i  = 0) over the two obstacle shapes f ( x )  = sech2x and f(x) = sech x. The Froude number 
F = 0.2903. 

102 

A = 0.8 

I I I I 
0 0.2 0.4 

P 
FIGURE 1. The lee-wave amplitude (normalized with the result of linear theory (2.10)) as a function 
of the dispersion parameter for uniformly stratified flow of a Boussinesq fluid ( N  = 1, f i  = 0) 
over the obstacle f(x) = sech x, and for certain values of the parameter A :  -, asymptotic results 
(3.7); 0, numerical results. The Froude number F = 0.2903. 

order-of-magnitude increase of the lee-wave amplitude. This suggests that the range 
of validity of the linear theory is limited. 

We now turn to a discussion of results from a fully numerical computation of lee 
waves. In the case of uniformly stratified flow, as noted earlier, the governing equation 
is linear. Hence, the equations for the modal amplitudes a,(x) in (4.2) are uncoupled 
and can be readily integrated without iteration. Figures 1 and 2(a), respectively, 
show plots of the computed lee-wave amplitude (defined as the amplitude of al(x) 
as x -+ 00) against the dispersion parameter 1.1 (keeping A fixed) for the two obstacle 
shapes f(x) = sech2x and f(x) = sech x. Figure 2(b) shows the lee-wave phase 
shift, caused by nonlinearity, as a function of p for f(x) = sech x. In these plots, the 
predictions of the asymptotic theory (viz. (3.7) and (3.13) respectively) are put together 
for comparison. Also, to bring out the effect of finite amplitude, several values of 
the parameter A are considered and the results are normalized by the corresponding 
linear result (2.10). 

According to figures 1 and 2, there is reasonably good agreement between the 
asymptotic and numerical results for a wide range of values of p, well beyond the 
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I I I I 

0 0.2 0.4 

I 
A = 0 . 1  

0 0.2 0.4 
P 

FIGURE 2. Asymptotic (-) and numerical (0) results as a function of the dispersion parameter 
p for lee waves induced by uniformly stratified flow of a Boussinesq fluid ( N  = 1, p = 0) over 
the obstacle f(x) = sech x, and for certain values of the parameter A :  (a) the lee-wave amplitude 
(normalized with the result of linear theory (2.10)); (b)  the lee-wave phase shift. The Froude number 
F = 0.2903. 

weakly nonlinear, nearly hydrostatic rigime (c ,p << 1) where the theory is formally 
valid; in fact, the flows corresponding to the largest values of p for which results 
are plotted in figures 1 and 2 are quite nonlinear as regions of closed streamlines 
are about to appear (when this happens, Long's equation (2.2) is invalidated because 
not all streamlines originate far upstream). Moreover, as suggested by the asymptotic 
theory, the effect of finite amplitude results in significant amplification of the lee 
waves, even for values of A as small as 0.1. 

Comparing figure 2(a) with figure 1, it is clear that, in the limit p + 0, finite- 
amplitude effects are relatively stronger for f = sech x; the ratio of the nonlinear to 
the linear lee-wave amplitude tends to cg as p t 0 in figure 2(a) because the value of 
LY in (3.13) is always greater than 1 as noted in (5.1). The actual lee-wave amplitude, 
however, is negligibly small for both f = sech2x and f = sech x in this limit, and the 
difference between these two obstacle profiles has no serious physical consequences. 

On the other hand, when p is not very small, the lee-wave amplitude can be 
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FIGURE 3. Streamlines of uniformly stratified flow of a Boussinesq fluid (Af = 1, ,6 = 0) over the 
obstacle f(x) = sech'x for j~ = 0.3, A = 0.4 ( E  = 0.036): (a) results of linear theory; (h )  numerically 
computed results on the basis of the full nonlinear equations. The Froude number F = 0.2903. 

X 

substantial and, physically, the role of nonlinearity in enhancing the lee waves 
induced by both obstacle shapes is of far greater significance. This point is clearly 
demonstrated in figure 3 which shows streamlinest of the flow field induced by the 
obstacle f(x) = sech2x for p = 0.3, A = 0.4 (6 = 0.036), as predicted by the linearized 
equations of motion (figure 3a) and the full nonlinear equations (figure 3b). Even 
though the value of E. is quite small, linear theory grossly underestimates the lee waves 
downstream. On the basis of the asymptotic theory, this dramatic difference can be 
attributed to the fact that, for A = 0.4, the constant C1 in (3.7) is about 7 times larger 
than the corresponding linear ( A  -+ 0) value (see table 1). 

We also remark that, unlike their completely different behaviour in the limit y -+ 0, 
the lee waves induced by the two obstacle profiles considered here behave similarly 
for moderately small values of p, when the lee-wave amplitude is appreciable. To 
illustrate this, for p = 0 . 3 ~ / 2  = 0.47, E. = 0.036 ( A  = 0.076), the profile f(x) = sech x 
closely resembles f ( x )  = sech2x for p = 0.3, e = 0.036 ( A  = 0.4) - both have the same 
peak amplitude and enclose the same area. Under these conditions, the two obstacle 
profiles give rise to very similar lee-wave patterns; in both cases the nonlinear response 
is several times larger than the linear one, as illustrated in figure 3 for f(x) = sech2x. 

5.2. Linearly varying N 2  
In the case that N 2 ( z )  varies linearly with depth (b  = l), it is necessary to solve 
the problems (2.6b), (2.7b) and (2.9h) numerically; moreover, depending on the flow 
speed, the value of x in (3.13) can be less than 1. 

From (2.9b), we find c1 = 0.391, c2 = 0.194, and as a first choice of flow speed we 
take F = 0.25. According to Grimshaw & Smyth (1986), this value of F is within the 
non-resonant range c2 + ~ ~ ' ~ 4 2  < F < c1 - ~''~4~ (dl = 0.22, 42 = 0.03) for E. < 0.2. 
The eigenvalue problem (2.7b) then yields I C ~  = 14.4 and one has x = 1 + 0.12A from 
(3.11). Computed values of the constant C1 under these flow conditions are listed in 
table 2, for the two obstacle shapes under consideration and certain values of the 
nonlinearity parameter A.  As in the case of uniform stratification, C1 increases with A 

i- The streamline pattern shown in figure 3(a) satisfies the linearized versiq of the boundary 
condition (2 .3~1)  that is applied on z = 0, so the first streamline above z = 0 'id oes not coincide 
with the obstacle profile exactly. On the other hand, the nonlinear response shown in figure 3(b) 
satisfies the nonlinear boundary condition (2.3a) on z = ~f(x), and the first streamline above z = 0 
coincides with the obstacle profile. 
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f ( x )  = sech’x f(x) = sech x 

A CI A c1 

A + 0 l.8A A + 0 0.24A 
0.2 0.49 0.1 0.034 
0.4 2.0 0.2 0.15 

TABLE 2. Computed values of the constant CI appearing in the asymptotic results (3.7) and (3.13) 
for certain values of the parameter A in the case of stratified flow of a Boussinesq fluid (/I = 0) with 
M 2  = 1 + z over the two obstacle shapes f(x) = sech’x and f(x) = sech x. The Froude number 
F = 0.25. 

more rapidly than lincar theory would predict so nonlinearity is expected to amplify 
the lee waves. 

When the stratification is not uniform, there is an additional technical complication 
in computing finite-amplitude lee waves because the governing equation (2.2) is 
nonlinear and it becomes necessary to use iteration in solving for the modal amplitudes 
a,(x) in (4.2). Nevertheless, as shown in figures 4(a)  and 4(b)  for F = 0.25, the results 
are qualitatively similar to the case of constant discussed above (see figures 1, 
2a). Again nonlinearity increases the lee-wave amplitude significantly, although not 
as dramatically as in the previous case, consistent with the asymptotic theory. Also, 
for f ( x )  = sech’x, as A is increased, the validity of the asymptotic results seems to be 
limited to a relatively narrow region close to ,u = 0. 

Finally, we consider the flow speed F = 0.3162 ( F 2  = 0.1) which also lies within 
the subcritical non-resonant range for E < 0.1, say. For this value of F ,  (2.7b) yields 
~1 = 5.24 and c( = 1 - 0.85A according to (3.11). Hence a < 1 and, even though the 
asymptotic analysis in $3.2 that leads to (3.13) for f ( x )  = sechx is not strictly valid 
under these flow conditions (see Appendix B), we suspect that here nonlinearity could 
diminish the lee-wave amplitude. As shown in figure 5, this hypothesis seems to be 
supported by numerical computations only when ,LL and c are quite small and the 
lee-wave amplitude is negligible. For larger values of ,LL and E, the computed lee-wave 
amplitudes still are somewhat greater than those predicted by linear theory, but the 
effect of nonlinearity is not as pronounced as in the cases discussed earlier where 
u >  1. 

6. Concluding remarks 
We have studied the effect of nonlinearity on steady lee-wave patterns induced by 

subcritical stratified flow over smooth topography. For a given topography shape, 
the relative significance of nonlinearity in comparison with dispersion is measured by 
the parameter A defined in (l.l), and the classical linear lee-wave theory is valid only 
when A + 0. For A = 0(1), when weak nonlinear and dispersive effects are equally 
important, the amplitude of the induced lee wave, even though it is exponentially 
small, generally is determined by a fully nonlinear mechanism. In this regime, we 
have developed an asymptotic theory using asymptotics beyond all orders, which 
reveals that nonlinearity can enhance the lee-wave amplitude dramatically. We have 
also carried out numerical computations to confirm the predictions of the asymptotic 
theory. Our computations, in addition, indicate that the asymptotic results remain 
reasonably accurate for a wide range of flow conditions beyond the formal region 
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FIGURE 4. The lee-wave amplitude (normalized with the result of linear theory (2.10)) as a function 
of the dispersion parameter p for stratified flow of a Boussinesq fluid ( p  = 0) with Af’ = 1 + z 
and for certain values of the parameter A :  --, asymptotic results (3.7); o numerical results. The 
Froude number F = 0.25. (a) Flow over the obstacle f(x) = sech2x; and ( b )  over the obstacle 
f(x) = sech x. 

of validity of the theory. Under such conditions, the (formally exponentially small) 
lee-wave amplitude is substantial and can be significantly larger, sometimes by an 
order of magnitude, than the estimate obtained on the basis of linear lee-wave theory. 

In the present study, we have considered steady flow, excluding the possibility of 
upstream influence. We expect these conditions to hold as long as the flow speed 
is not close to critical and no wave breaking (density inversions) occurs during the 
transient development of the flow (Grimshaw & Smyth 1986; Grimshaw & Yi 1991; 
Lamb 1994). Furthermore, the inviscid model used here is expected to be relevant 
as long as no flow separation occurs. In spite of these limitations of the theory, the 
effect of nonlinearity on the induced lee waves is very pronounced even when the 
topography has small amplitude, and should be noticeable in experiments. 

Finally, it would be worth exploring finite-amplitude effects on three-dimensional 
lee-wave patterns induced by stratified flow over topography that depends on both 
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FIGURE 5. Numerically computed values of the lee-wave amplitude (normalized with the result of 
linear theory (2.10)) as a function of the dispersion parameter p for stratified flow of a Boussinesq 
fluid ( p  = 0) with A'"* = 1 + z over the obstacle f ( x )  = sech x, and for certain values of the 
parameter A. The Froude number F = 0.3162. 

the streamwise and the spanwise directions, In this case, a continuous distribution of 
wavenumbers is excited, and nonlinearity may influence certain portions of the wave 
pattern more seriously than others. 
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Appendix A. Asymptotic analysis for f(x) = sech2x 

the lee wave induced by the topography f ( x )  = sech2x. 

integral-differential equation 

Here we give details of the asymptotic analysis that leads to expression (3.7) for 

Substituting (3.4) into (3.11, it is found that, to leading order, @ satisfies the 
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with the notation 

Moreover, the boundary conditions (3.2) yield 

The solution of this problem is posed as a power series, 

with bl = -;A&) according to (3.5). The coefficients b,(m 
determined successively from the infinite sequence of boundary-value problems 

2) then can be 

m-3 m-2 

j=l j=1 

m- 1 (2m - 2 j  - l)! djbmPj 
bm(0) = - C A' (017 j!(2m - l)! dzj 

j= 1 

b,(l) = 0. (A 5b) 

The expressions for L,, Sm, Pij), Qi) and J$) above contain complicated convolution 
sums involving bl, . . . , bm-l; they arise from the multiple convolution integrals in (A 1) 
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and are given by 
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(2m - 2s - 1)!(2s - l)! 

(2m - 2s - 2)!(2s)! 

(2m - 2s - 2)!(2s)! 

m- 1 

b‘,-,b$ ; ~m = C ( 2 m - 1 ) !  

sm = c (2m-  l)!  

sm = c (2m-  l)! 

s=l 
m-2 

bm-s-lbs (m 2 3), S2 = 0; 
S=l 
m-2 

bm-s-tbs (m  2 31, s2 = 0; 
s= 1 

(2m - 2s - 1)!(2s - l ) !  
(2m - l)! 

In- 1 

pit) = b,, P:+l) = b,-,J’$j) ; 
s = j  

m-3 
( j )  - 0.  Sm-,P~-f )  ( m  2 4), QY) = Q3 - , 

(2m - 2s - 1)!(2s - l)! 
(2m - l)! Q g )  = 

s= 7 

m-2 (2m - 2s - 1)!(2s - l)! 
(2m - l)! 

= C LmpsPp (m 2 3), Ry) = 0. 
s=j 

In particular, for m = 2, (A4)-(A 5b) give 

bz(0) = -kAb;(O), b2(1) = 0;  
the solution is 

consistent with (3.5). 
Although, in principle, one may proceed to determine b,(z) for m > 2, it is the 

asymptotic behaviour of b,(z) as m -+ co that controls the convergence of the power 
series (A3) and, hence, the singularities of @ ( K , z )  in the h--plane. In the limit m -+ m, 
the boundary-value problem (A 4)-(A 5b) in fact simplifies significantly because the 
contribution of the convolution sums in (A4) is subdominant, 

Jv2 
F2 

b i  - pJv2bk + -bm - bm-l 

and the boundary condition (A 5a) becomes effectively homogeneous : 

b,(O) + 0 

(m -+ GO), 

(m  -+ GO). 

Hence, b,(z) may be expanded in terms of the lee-wave modes defined by the 
eigenvalue problem (2.7b) : 

v3 

brn(z) C g m r 4 r ( z )  ( m  + GO). 
r=l 

The coefficients gmr obey the simple recurrence relation 
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IC, being the corresponding eigenvalues, so that 

ginr GK," 

and 
m 

bnl - c crKlrn4 , (z j  (m + m), (A 6 )  
r=l 

where Cr are certain constants that depend on bl(z) and cannot be determined by 
asymptotic analysis alone. 

Combining (A 6) with (A 3), it is now clear that @ ( K ,  z) has simple-pole singularities 
at K = +_Ic,,,, : 1 / 2  

Appendix B. Asymptotic analysis for f(x) = sech x 

the lee wave induced by the topography f ( x )  = sech x. 

(3.1)-(3.2), @(K, z )  satisfies to leading order 

Here we give details of the asymptotic analysis that leads to expression (3.13) for 

Assuming for now that K is not too close to +IC$~,  upon substituting (3.8) into 

subject to the boundary conditions 

@( K ,  1) = 0, (B 2b) 

where yj(x,z) = (sgn x)j-lYj(~,z) in terms of the Yj(x,z) appearing in (A 1). 

In preparation for the local analysis that becomes necessary close to +rcY2, next 
we examine the asymptotic behaviour of @(K,z) in the 'intermediate' region where K 

is close to +_'cY2 but (B 1)-(B 2b) still hold, p << ~i~ - / K \  << 1. Specifically, suppose 

where CN,  CO and !x are to be determined. Then, by dominant balance, it follows 
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from (B 1) and ( B  2a) respectively that 
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where 

Hence, 

and, on the basis of (B 1),(B2bj7 the singularities of @ ( K ,  z )  at K = SIC!* are not 
simple poles (save in the linear limit A t 0), contrary to the fact that the induced lee 
wave has constant amplitude as x + m; this is an indication that the leading-order 
problem (B 1)+B2b) for 8 breaks down in the immediate vicinity of IC = +K?, 

K? - I K I  = O(,u), and the asymptotic behaviour ( B 3 )  is not valid there. Also note 
that the dominant-balance argument used above to obtain (B4b) is not valid when 
M < 1 - a different theoretical approach is needed but this matter is not pursued here. 

> l), we return to 
the (exact) boundary-value problem (3.1)-(3.2) and approximate the terms involving 
convolution integrals more accurately. Specifically, near K = KY', (B 3)  suggests the 
rescaling 

To obtain the structure of @ ( k , z )  close to k = +kN (assuming 

in terms of the 'inner' variable = (xY2 - ~ ) / p  Combining then (B6)  with (3.8),  
taking into account (B4b), it follows from (3.1)-(3.2) that, to leading order, v(q)  
satisfies the (singular) integral equation 

no 
yv(q) - ;(a - 1) dae-""/'sech-v(q - 6) = 0, (B 7 4  2 

subject to the condition 

that ensures matching with (B 3).  

1995). Briefly, the solution is posed as 
This linear problem can be readily solved via integral transform (Akylas & Yang 

u(y) = eOsV(s)ds, 

where the contour 2 extends from s = 0 to co with Re ys > 0 and Im s < 0. With 
this choice of 9, v(q) is analytic in Imq > 0 and, hence, does not contribute to the 
singularities of @ ( k , z )  in Im k < 0, consistent with the upstream condition (2.1) that 
the excited lee waves vanish in x < 0. Upon substitution of (B8) into ( B ~ u ) ,  V(s) 
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satisfies the differential equation 
V 

(a  - 1)- = 0, 
dV 
ds sin s 
_ -  

and, in view of the matching condition (B 7b),  

where r(a) denotes the gamma function. The appropriate solution is 

and, using (B 8), it is seen that v(y) has a simple-pole singularity at y = 0 

Finally, combining (B 9) with (3.8) and (B6), we have established that @(k, z )  has a 
simple-pole singularity at k = kN and, by very similar reasoning, the same is true at 
k = -kN: 

According to (BlO), the residues of the poles of @ ( k , z )  at k = &kN, and hence 
the lee-wave amplitude, depend on the constant CN,  which has to be determined 
numerically. For this purpose, the solution to the problem (B 1)-(B 2b) is posed as a 
power series, 

m 

m=l 

with bl = - i A g ( z )  according to (3.9), and, upon substitution into (B l)-(B2b), one 
has an infinite sequence of boundary-value problems, analogous to (A 4)-(A 56), for 
b,(z) ( m  3 2). The value of CN is then found from integrating these problems 
numerically making use of the fact that, in view of (B3), the projection of b,(z) on 
~ N ( z )  behaves like 

as m -+ co. 
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